
1 

 

MINISTRY OF EDUCATION AND TRAINING 

HCMC UNIVERCITY OF TECHNOLOGY AND EDUCATION 

 

 

 

 

VAN THIEN TRAN 

 

 

 

 

 

 

DEVELOPMENT OF STOCHASTIC COMPOSITE PLATE MODELS 

SUBJECTED TO MECHANICAL  

AND THERMAL LOADS 

 

 

 

 

 

 

Major: Engineering mechanics 

Specialized code: 9520101 

 

 

 

 

SUMMARY OF DOCTORAL DISSERTATION 

 

 

 

 

 

HO CHI MINH CITY – 2024  



2 

 

Dissertation is completed at HCMC Univercity of Technology and Education 

 

 

 

 

Supervisor 1: Prof. Dr. Trung-Kien Nguyen 

Supervisor 2: Dr. Van-Hau Nguyen 

 

 

 

 

 

 

Reviewer 1:   

Reviewer 2:   

Reviewer 3:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

LIST OF PUBLICATIONS 

International Journal Articles 

1. Van-Thien Tran, Trung-Kien Nguyen, P. T. T. Nguyen, and T. P. Vo, Stochastic 

vibration and buckling analysis of functionally graded microplates with a unified 

higher-order shear deformation theory, Thin-Walled Structures, vol.177, p.109473,8/ 

2022, SCIE (Q1). https://doi.org/10.1016/j.tws.2022.109473 

2. Van-Thien Tran, Trung-Kien Nguyen, H. Nguyen-Xuan, Magd Abdel Wahab, 

Vibration and buckling optimization of porous functionally graded microplates using 

BCMO-ANN algorithm, Thin-Walled Structures, Thin-Walled Structures, vol. 182, p. 

110267, 01/2023, SCIE (Q1). https://doi.org/10.1016/j.tws.2022.110267 

3. Van-Thien Tran, Trung-Kien Nguyen, P. T. T. Nguyen, and T. P. Vo, Stochastic 

collocation method for thermal buckling and vibration analysis of functionally graded 

sandwich microplates, Journal of Thermal Stresses, vol. 46, p. 909-934, 6/2023, SCIE 

(Q2).  https://doi.org/10.1080/01495739.2023.2217243 

4. Van-Thien Tran, Trung-Kien Nguyen, H. Nguyen-Xuan, An intelligent 

computational iBCMO-DNN algorithm for stochastic thermal buckling analysis of 

functionally graded porous microplates using modified strain gradient theory, Journal of 

Thermal Stresses, online, 7/2024, SCIE (Q2). 

https://doi.org/10.1080/01495739.2024.2368054 

5. Van-Thien Tran, Trung-Kien Nguyen, H. Nguyen-Xuan, T. P. Vo, Meta-heuristic 

optimization algorithms for vibration and buckling analysis of laminated composite 

plates, Engineering Analysis with Boundary Elements, vol.169, Part A, 12/ 2024, 

105974, https://doi.org/10.1016/j.enganabound.2024.105974. SCI (Q1).  

6. Van-Thien Tran, Trung-Kien Nguyen, Van-Hau Nguyen, T. P. Vo, Novel 

computational algorithms for vibration, buckling, and transient analysis of porous metal 

foam microplates, submitted. 

Domestic journal article 

1.Van-Thien Tran, Nguyen Van Hau, Trung-Kien Nguyen, T. P. Vo, Static and 

vibration analysis of functionally graded microplate with porosities based on higher-

order shear deformation and modified strain gradient theory, Vietnam Journal of 

Mechanics, 2023, ACI. https://doi.org/10.15625/0866-7136/17552 

International Conferences 

1.Van-Thien Tran, Trung-Kien Nguyen, A general framework of higher-order shear 

deformation theory for free vibration analysis of functionally graded microplates, 

Proceedings of the Second International Conference on Sustainable Civil Engineering 

and Architecture (ICSCEA-2021), Lecture Notes in Civil Engineering, vol.268, 713–727 

2023, index scopus_Q4. https://doi.org/10.1007/978-981-19-3303-5_64 

2. Van-Thien Tran, Trung-Kien Nguyen, Van-Hau Nguyen, An Efficient Size-

Dependent    Computational Approach for Functionally Graded Porous Sandwich 

Microplates Based on Modified Couple Stress Theory, International Conference on 

Green Technology and Sustainable Development (GTSD 2022), Lecture Notes in 

https://doi.org/10.1080/01495739.2023.2217243
https://doi.org/10.1016/j.enganabound.2024.105974


4 

 

Networks and Systems, vol 567, 82-96, 2023, index scopus_Q4 

https://doi.org/10.1007/978-3-031-19694-2_8 

National Conference 

1.Van-Hau Nguyen, Van-Thien Tran, Trung Kien Nguyen, A BCMO-DNN algorithm 

for vibration optimization of functionally graded porous microplates, Tuyển tập công 

trình khoa học Hội nghị Cơ học toàn quốc lần thứ XI (NACOME2 022), Nhà xuất bản 

Khoa học tự nhiênvà Công nghệ, Tập 1, 577-588, 2022. 

 

CHAPTER 1 INTRODUCTION 

Due to their superior hardness and lightness, laminated composite materials are 

widely utilized in fields like mechanical engineering, aerospace, and 

construction. However, their layered structure leads to stress concentrations and 

potential delamination at the interfaces. Thus, functionally graded materials 

(FGMs) have been developed to address this, offering a continuous variation in 

material properties along specific directions. Recent advancements have also 

enabled the production of functionally graded porous materials and porous metal 

foam materials, which enhance sound dampening and reduce structural weight, 

making them highly valuable for modern applications. However, the 

development of such materials accompanied efficiently computational methods 

and models in order to predict accurately their responses at different structural 

scales. Therefore, this dissertation carried out the “development of stochastic 

composite plate models subjected to mechanical and thermal loads”.  

CHAPTER 2 OVERVIEW OF THEORETICAL BASIS 

2.1 Advanced composite materials for analysis of plates  

2.1.1 Laminated composite materials 

Due to their many advantages in stiffness and lightness, laminated composite 

materials have been widely applied in many engineering fields, such as aviation 

and construction, mechanical engineering, etc. The LC structure is made of two 

or more layers of component composite materials that are bonded together at the 

interface between the layers.  

2.1.2 Functionally graded materials 

The material properties such as Young’s modulus E , mass density  , Poisson’s 

ratio   of FGP material  can be approximated by the following expressions . 

        3 3 0.5c m c m c mP x P P V x P P P      (2.1) 

2.1.3 Functionally graded sandwich materials 
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Sandwich structures offer numerous advantages, such as being lightweight and 

having high bending stiffness, making them ideal for use in aircraft, aerospace, 

flexible electronics, and biomedical applications. A typical sandwich structure 

consists of two FGMs face sheets with a homogeneous core in between. 

2.1.4 Porous metal foam materials 

The effective material properties of porous metal foam materials: Distribution of 

uniform porosity; Distribution of asymmetric porosity; Distribution of symmetric 

porosity. 

2.2 Plates theories 

In the context of plates, the displacement field is expressed in terms of unknown 

functions 
j

i  of the surface coordinates  1 2,x x  and time t . 

     1 2 3 3 1 2

0

, , , , ,
N

j j

i i

j

u x x x t x x x t


  (2.12) 

The explicit form of Eq. (2.12) varies depending on the kinematics of the 

deformation being considered including CPT, FSDT, HSDT, Quasi-3D, and 

three-dimensional elasticity. 

2.3 Size dependent analysis of microplates 

The MCT initiated by Yang was known as the simplest one to include the size 

effects with only one material length scale parameter (MLSP) associated with 

rotation gradient in the constitutive equations. The MST proposed by Lam 

modified the classical strain gradient theory of Mindlin, Mindlin and Eshel to 

establish a new set of high-order metrics, where the total number of MLSP was 

reduced from five to three.  

  UB

A

dA         σ ε p τ η m χ    (2.20) 

where , , ,ε χ ξ η  are strains, symmetric rotation gradients, dilatation gradient and 

deviation stretch gradient, respectively; σ  is Cauchy stress; , ,m p τ are high-

order stresses corresponding with strain gradients , ,χ ξ η , respectively. 

2.4 Ritz solution 

The Ritz method was initially introduced by Walter Ritz to analyze the free 

vibrations of structures.  

          
1 2

0

1 1 2 1 1 2 1 ,1 1 2

1 1

( , , ), ( , , ) ,
N N

ji ji j i

j i

u x x t x x t u t x t F x P x
 

   (2.24a) 
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           
1 2

0

2 1 2 2 1 2 2 1 ,2 2

1 1

( , , ), ( , , ) ,
N N

ji ji j i

j i

u x x t x x t u t y t F x P x
 

  (2.24b) 

      
1 2

0

3 1 2 3 1 2

1 1

( , , )
N N

ji j i

j i

u x x t u t F x P x
 

  (2.24c) 

where 1 2 3, , , ,ji ji ji ji jiu u u x y  are variables that need to be calculated; the shape 

functions in the 1x   and 2x   directions are represented by    1 2,j iF x P x .   

2.5 Stochastic method 

Monte Carlo Simulation (MCS) method is the simplest and most popular 

approach to solve this complicated problem. Another approach is to use 

polynomial chaos expansion (PCE) which speeds up the computing process 

while still maintains the accuracy. Stochastic collocation (SC) is known as one 

of stochastic expansion method similar to the popular PCE. It method allows for 

the efficient and accurate computation of statistics and solutions of mathematical 

models that involve stochastic input parameters. 

2.6 Neural network systems 

Besides, the combination between the BCMO algorithm and ANN to determine 

optimal responses for FG microplates with uncertainties of material properties 

has not been developed yet, this interesting topic needs to be investigated. 

Moreover, a novel intelligent computation algorithm iBCMO-DNN for solving 

the stochastic thermal buckling problems of FGP microplates by using the MST, 

unified HSDT and Ritz method will propose. 

2.7 Meta-heuristic algorithms 

In contrast to optimization algorithms and iterative methods, meta-heuristics 

algorithms do not ensure the discovery of a globally optimal solution for certain 

problem classes. Three algorithms including differential evolution (DE), shrimp 

and goby association search algorithm (SGA) and balancing composite motion 

optimization (BCMO) are used to solve the above problem. 

2.8 Conclusion 

A literature review shows that it is necessary to develop stochastic composite 

plate models subjected to mechanical and thermal loads. For this aim, the 

dissertation will focus on the contents: 

• Develop the new hybrid shape functions for the Ritz method. 

• Develop stochastic models to investigate the behaviors of microplates 

with uncertain material properties. 

• Develop new computation algorithms using artificial intelligence to 

solve the stochastic problems of microplates.   
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• Propose optimization methods to search the optimal fiber directions of 

laminated composite plates. 

CHƯƠNG 3 HERMITE- AND LAGUERRE-RITZ SOLUTIONS FOR 

ANALYSIS OF POROUS METAL FOAM MICROPLATES 

3.1 Objectives of the study 

The orthogonal polynomials Hermite and Laguerre as shape functions are used 

to study the material properties of PMF microplates with different boundary 

conditions. 

3.2 Theoretical formulation 

3.2.1. Porous metal foam material 

Consider a rectangular microplate made of porous metal foam (PMF) material. 

The microplate has a thickness h  and sides a b . Fig. 3.1 displays the material 

properties of three different types of porosity distributions throughout the 

thickness of the PMF microplates. The connection between mass density   and 

Young's modulus E  can be expressed as follows: 

 Distribution of uniform porosity  

     max 1z    ;    max 1E z E    (3.1) 

 Distribution of asymmetric porosity  

   max 1 cos
2 4

m

z
z

h

 
  

  
    

  
;   max 1 cos

2 4

z
E z E

h

 


  
    

  
 (3.2) 

 Distribution of symmetric porosity  

    max 1 cosm

z
z

h


  

  
   

  
 ;   max 1 cos

z
E z E

h




  
   

  
 (3.3) 

(a) Por (a) Porosity is uniformly distribution (b) Por (b) Porosity is symmetric 

distribution 

(c) Porosity is asymmetric distribution 

                        Figure 3.1: Three types of porous metal microplates 
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where maxE  and max  are maximum values of Young's modulus and mass density, 

respectively;   and m  denotes the porosity parameters and mass density, which 

are given by:  

 min

max

1 ,0 1
E

E
      ; min

max

1 ,0 1m m


 


     (3.4) 

where minE  and min  are minimum Young's modulus and mass density.  

In which 

 1 1m        (3.5) 

The material characteristics in the case of a distribution of uniform porosity 

remain constant in the thickness direction and depend only on the porosity 

coefficient  . Thereafter, the coefficient   is written as follows: 

 

2
1 1 2 2

1 1 
   

 
     

 
    (3.6) 

3.2.2 Unified high-order shear deformation theory of porous metal foam 

microplate 

The kinematic of present HSDT for analysis of PMF microplates is given by:  

           

       

1 2 3 3 3 1 2 3 3 2 1 1 2

2 3 3 1 2 1 3 2 1 1 2

, , , ,

, ,

s sx x x H x x x H x x x x

x x x x x x

     

    

u u u u

u u u
  (3.7) 

Where 

1

2

3

u

u

u

 
 
 
 
 

u = , 

0

1

0

1 2

0

3

u

u

u

 
 

  
 
 

u , 

0

3,1

0

2 3,2

0

u

u

 
 

  
 
 

u ,

1

3 2

0





 
 

  
 
 

u ;  3f x  is a higher-order shear 

term, ,3 3 0
2

h
f x
 

   
 

; sH is  the PMF microplate’s the transverse shear 

stiffness;  
 

   

3 3

,3 ,3

3 3 3

3 30 0

2 1
x x

f f
x dx dx

E x x






    . 

3.2.3 Modified couple stress theory (MCT) 

Moreover, following the MCT, the strain energy of the microplate is defined as: 

 SE

A

dA     σ ε m χ    (3.9) 
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where ij  and ij , respectively, are strain and symmetric rotation gradient 

components;  ij  are Cauchy’s stress component; ijm  are the high-order stresses 

connected to the strain gradient ij . 
3.2.4 Ritz formulation of porous metal foam microplate  

Based on the Ritz approach and variational formulation of the PMF 

microplates, a series of approximation functions and associated values can be 

utilized to represent the membrane and transverse displacements 

 0 0 0

1 2 1 2 3, , , ,u u u  of the PMF microplates, as follows: 

           
1 2

0

1 1 2 1 1 2 1 2 ,1 1

1 1

( , , ), ( , , ) ,
n n

ij ij j i

i j

x x t u x x t x t u t F x T x
 

  (3.27a) 

           
1 2

0

2 1 2 2 1 2 2 ,2 2 1

1 1

( , , ), ( , , ) ,
n n

ij ij j i

i j

x x t u x x t y t u t F x T x
 

  (3.27b) 

      
1 2

0

3 1 2 3 2 1

1 1

( , , )
n n

ij j i

i j

u x x t u t F x T x
 

  (3.27c) 

where 3 2 1, , , ,ij ij ij ij ijx y u u u  are the unknown variables. It is noted that two shape 

functions in the 
1x   and 

2x   directions,  1iT x  and  2jF x  are sufficient to 

figure out the PMF microplate's five unknowns. In this study, the Hermite 

polynomial and Laguerre polynomial, which are defined by this recursion 

formula, are used to develop novel Ritz method's shape functions. The Hermite 

polynomial are characterized by the following recursion formula: 

 0 1

1 2

1, 2 ,

2 2

( ) ( )

( ) ( ) ( ) (1 )n n n

He x He x x

He x xHe x n He x 





 

  
   (3.28) 

Hermite polynomials satisfy normalization as follows: 

 
22 2( !( )) x nHe x e dx n




     (3.29) 

Hypergeometric functions define the generalized Laguerre function: 

  1 1L ,( , ;) 1;
n a

n a x F n a x
a

 
   
 

 (3.30) 

The function returns orthogonal generalized Laguerre polynomials for 

nonnegative integer values of n : 

    1 2
0

1, 2 x af fe x x f x xf d


   (3.31) 

Furthermore, generalized Laguerre polynomials fulfill this normalization: 

  )L , , , L

0

( ) ( 1

!

, ,

if n

n
n a nx m

m

a
i

a x
f m

n




   




 (3.32) 
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The following BCs result from the combination of fully clamped and simply-

supported BCs on the borders of the PMF microplates. The numerical examples 

will include SSSS, SCSC, and CCCC in Table 3.1 as follows: 

Table 3.1: Approximation functions of series solutions with different BCs 

Boundary 

conditions 

 Approximation functions 

  1jT x   2jF x  

SSSS Ritz-Hermite  1 1 jx a x He   2 2 jx b x He  

 Ritz-Laguerre  1 1 jx a x L   2 2 jx b x L  

SCSC Ritz-Hermite  
2

1 1 jx a x He   
2

2 2 jx b x He  

 Ritz-Laguerre  
2

1 1 jx a x L   
2

2 2 jx b x L  

CCCC Ritz-Hermite  
22

1 1 jx a x He   
22

2 2 jx b x He  

 Ritz-Laguerre  
22

1 1 jx a x L   
22

2 2 jx b x L  

The PMF microplate's characteristic equations of motion: 

    t Kd Cd Md F=  (3.33) 

3.3 Numerical results 

In this part, numerical examples are performed to explore free vibration, 

buckling, and transient analysis of PMF microplates with three different 

boundary conditions (SSSS, CCCC, SCSC) and using the shear function 

     1 3 3

3 3 3cot / 16 /15x h x x h   . The PMF microplates are designed to be built 

of metal foam materials whose characteristics are followed: max 200E  GPa, 

max 7850  kg/m3, max 0.33v  . For simplicity, the numerical examples utilize the 

following normalized response parameters: 

 max max100 /h E    ;  2 3

max/cr crN N a h E  (3.46) 

3.3.1 Study convergence 

To assess the convergence and efficiency of the current method, this part 

will compare the convergence speed and stability of the proposed shape functions 

to those of previously studied admissible functions for the case of full clamped 

boundary condition: 

Static Beam Functions (SBF):   

    2 3

2 2 2 2 2sin /j j j j jF x A B x C x D x jx b       (3.47) 

with       2 30; / ; 1 2 / ; 1 1 /
j j

j j j jA B j b C j b D j b            . 

Non-Orthogonal Polynomials (NOP): 

    
2 1

2 2 2

j

jF x b x x     (3.48) 

Product of Trigonometric Functions (PTF): 
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      2 2 2sin / sin /jF x x b j x b    (3.49) 

Characteristic Functions (CF): 

    2 2 2 2 2sin sinh cos coshj j j j j jF x x x x x          (3.50) 

with      sin sinh / cos cosh ; 0.5 /j j j j j jb b b b j b           . It is noted 

that the functions  1jT x   are defined in a similar way by replacing the variable 

2x  for 
1x , the length b  for the width a  in the previous equations. For the purpose 

of investigating the convergence of approximation functions, the reference 

distance is defined as follows: 

 1f i id       (3.51) 

where 
i  and 

1i 
 are  results  of  fundamental  frequency of porous metal foam 

at 
in  and 

1in 
, respectively. 

In order to evaluate the convergence of the Ritz solution, Table 3.2 and Figs. 3.3-

3.4 show the convergence speed of fundamental frequencies of the PMF 

microplates under fully clamped boundary condition with / 10a h  , 0.3   and 

/h l   . It is noted that the present results are computed with six types of shape 

functions (Hermite, Laguerre, SBF, NOP, CF, PTF)  by supposing that the same 

number of series type-solution 
2x  and in 

1x  direction are similar, i.e. 

1 2n n n  . From Table 3.2, it can be seen that the largest number of series 15n   

for the result to converge belongs to the SBF function. Meanwhile, with a similar 

number of number of series 3n   for both Hermite and Laguerre orthogonal 

polynomials for series type solution, this is also the smallest number of series.  

With the number of series 8n  for NOP and PTF functions while 9n  for CF 

solution. 

Table 3.2: Comparison with convergence speed of the series solution  1 2n n n   

of porous metal foam PMF microplates with full clamped boundary condition for  

( / 10a h  , 0.3  , /h l   ) 

 Shape functions 

Normalized 

fundamental 

frequency 

IGA 

[176] 

SBF NOP PTF CF Hermite Laguerre 

9.5202 9.4124 9.3621 9.4009 9.3877 9.3824 9.3639 

Series   15n    8n   8n   9n   3n   3n   

 Moreover, the line graph compared the convergence speed of six kinds of shape 

functions in Fig. 3.3a. It is clear that the convergence speeds of the shape 

functions used to compute the fundamental frequencies are different among 

shape functions. As the number of series increases, the computation cost 
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increases (Fig. 3.3b). Therefore, to investigate complex structures, which need a 

small number of series but must ensure convergence. 

(a) Convergence speed  (b) Computational cost 

Figure 3.3: Comparison with both convergence speed and  computational cost of 

number of series of porous metal foam PMF microplates with full clamped boundary 

condition for normalized fundamental frequency ( / 10a h  , 0.3  , /h l   ) 

The orthogonal polynomials sequence gave accurate results when computing 

natural frequencies.  

3.3.2 Free vibration analysis 

Fig. 3.5 also shows that, considering the size effect, the frequency decreases as 

the /h l  ratio increases, and the curve becomes flat when the /h l ratio reaches 

20. The size effect is most prominent at the ratio  / 1h l  , and least significant at 

/h l  which is consistent with classical theory.  

(a) SSSS  (b) SCSC  (c) CCCC  

Figure 3.5: Variation of normalized fundamental frequencies with respect the 

length scale-to-thickness ratio /h l  and / 10a h   under uniform distribution 

3.3.3 Critical buckling analysis 

Figs. 3.7 illustrates the influence of porosities, size effects, and various boundary 

conditions for critical buckling analysis of PMF microplates using unified high 
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order shear deformation theory and modified couple stress with one length 

material l .  

(a) SSSS  (b) SCSC  (c) CCCC  

Figure 3.2: Variation of normalized critical buckling load for uniaxial 

compression with respect the length scale-to-thickness ratio /h l  and / 10a h   

under symmetric distribution 

3.3.4 Transient analysis 

This example focuses on the responses of PMF microplates under three types of 

dynamic load, namely explosive blast load, rectangular load, and triangular load. 

Since there is no available results of PMF microplates under dynamic loads, the 

verification is carried for PMF plates.   

3.4 Conclusions 

The numerical results of this study agree with information found in the literature. 

This shows that the current technique is trustworthy. Increasing the porosity 

coefficient reduces the natural frequencies and critical buckling of the 

microplates. The buckling and frequency of the porous metal foam microplates 

decreased with an increase in the thickness-to-length ratio. The study also 

considers the influence of various boundary conditions. Results show that the 

fully clamped microplate can withstand higher frequencies and buckling 

compared to other boundary conditions. The hybrid shape functions are produced 

by geometry boundary-satisfying polynomials and an orthogonal function 

sequence, which will satisfy condition convergence speed, stability, and 

computing time. 

CHAPTER 4 STOCHASTIC BEHAVIOR ANALYSIS OF 

FUNCTIONALLY GRADED MATERIALS MICROPLATES 

4.1 Introduction 
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The main objective of this chapter is to develop a stochastic model for free 

vibration and buckling analysis of the FG and FG sandwich microplates using a 

combination of unified HSDT, which is derived from the fundamental of 

elasticity theory and PCE, SC and MCT.  

4.2 Theoretical formulation 

4.2.1 FG microplates  

The material properties such as Young’s modulus E , mass density  , Poisson’s 

ratio    can be approximated by the following expressions: 

     3

3

2

2

p

c m m

x h
P x P P P

h

 
   

 
 (4.1) 

where 
cP  and 

mP  are the material properties of ceramic and metal; p  is the 

power-law index which is positive and  3 / 2, / 2x h h   

4.2.2 FG sandwich microplates  

The following formulas can be used to evaluate the effective material properties 

of FG sandwich microplates: 

      3 3c m c mP x P P V x P    (4.2) 

where the volume fraction of the ceramic material  3cV x  across the plate 

thickness is determined by Eq (4.3). 

with the power-law index p , cP  and mP  are the characteristics of ceramic and 

metal materials, respectively, such as the Young's moduli E , mass density  , 

and Poisson's ratio  . 

 

4 3

3 3 4

4 3

3 2 3 3

3 1

1 3 2

2 1

, FG top layer

1   ceramic core layer

FG bottom layer

p

c

p

z x
z x z

z z

V x z x z

x z
z x z

z z

 
   

 


  

 

    

 (4.3) 

For the effect of the thermal field, two types of distribution temperature are 

considered as below:  

 For  uniform distribution (UTR):    oT z T T   , the bottom surface's 

reference temperature is oT . 

 For linear distribution (LTR):     / 0.5t b bT z T T z h T    , 

temperatures at the top and bottom of the plate surface are represented 

by tT  and bT , respectively. 
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4.2.3 Modified couple stress theory (MCT) 

The total potential energy of the microplates is obtained by: 

 
U V K       (4.4) 

where , ,U V K    are the strain energy, work done by membrane forces and 

kinetic energy of systems. Based on the MCT, the strain energy of the system 

U  is given by: 

  U

V

dV   σε mχ  (4.5) 

where ,ε χ  are strains and symmetric rotation gradients, respectively; σ  is 

Cauchy stress; m  is the high-order stress corresponding with strain gradients χ

, respectively. The components of strain ij  and strain gradients ij  are defined 

as follows: 

  , ,0.5ij i j j iu u   ;  , ,0.25ij n mj imn n mi jmnu e u e    (4.6) 

where ,ij imne  are Knonecker delta and permutation symbol, respectively; The 

stress components are calculated from constitutive equations as follows: 

 
2ij kk ij ij     ; 22ij ijm l   (4.7) 

where ,   are Lamé constants; Latin indices in Eqs. (4.6) and (4.7) take values 

1, 2 and 3; l  is material length scale parameter (MLSP) which is used to measure 

the effect of couple stress. 

4.2.4 Unified HSDT theory of the microplates 

For simplicity purpose, the effects of transverse normal strain are neglected, i.e. 

   0

3 1 2 3 3 1 2, , ,u x x x u x x  where  0

3 1 2,u x x  is transverse displacement at the mid-

surface of the microplates. Moreover, it is supposed that the transverse shear 

stresses are expressed in terms of the transverse shear forces as follows:  

    13 ,3 3 1 1 2,f x Q x x  ;    23 ,3 3 2 1 2,f x Q x x   (4.10) 

where  3f x  is a higher-order term whose first derivative satisfies the free-stress 

boundary condition at the top and bottom surfaces of the microplates, i.e. 

 ,3 3 0.5 0f x h   ;    1 1 2 2 1 2, , ,Q x x Q x x  are the transverse shear forces. 

Additionally, transverse shear strains are linearly related to the membrane 

displacements    1 1 2 3 2 1 2 3, , , , ,u x x x u x x x  and transverse one  0

3 1 2,u x x  by: 

 0

13 1,3 3,1 13 ,3 1/ /u u f Q        ; 0

23 2,3 3,2 23 ,3 2/ /u u f Q        (4.11) 

where       3 3 / 2 1x E x    is the shear modulus. Furthermore, integrating 

Eq. (4.11) in 3x  direction leads to a general displacement field of the 

microplates as follows: 

        0 0

1 1 2 3 1 1 2 3 3,1 3 1 1 2, , , ,u x x x u x x x u x Q x x    (4.12a) 

        0 0

2 1 2 3 2 1 2 3 3,2 3 2 1 2, , , ,u x x x u x x x u x Q x x    (4.12b) 
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    0

3 1 2 3 3 1 2, , ,u x x x u x x  (4.12c) 

where     
3

3 ,3 3 3

0

/

x

x f x dx   . Moreover, it is known that the transverse shear 

forces can be expressed in terms of the rotation  1 2,   and gradients of the 

transverse displacement as follows: 

    0

1 1 2 1 3,1, sQ x x H u  ;    0

2 1 2 2 3,2, sQ x x H u   (4.13) 

where  
/ 2

3 3

/2

h

s s

h

H k x dx


   is the transverse shear stiffness of the microplates; 

5 / 6sk   is shear coefficient factor. Substituting Eq. (4.13) into Eq. (4.12) leads 

to a general HSDT as follows: 

          0 0

1 1 2 3 1 1 2 1 3 3,1 2 3 1 1 2, , , ,u x x x u x x x u x x x    (4.14a) 

          0 0

2 1 2 3 2 1 2 1 3 3,2 2 3 2 1 2, , , ,u x x x u x x x u x x x    (4.14b) 

    0

3 1 2 3 3 1 2, , ,u x x x u x x  (4.14c) 

where        1 3 3 3 2 3 3,s sx H x x x H x       .  

4.3 Series-type solutions 

Based on the Ritz method, the membrane and transverse displacements, rotations 

 0 0 0

1 2 3 1 2, , , ,u u u    of the microplates can be expressed in terms of the series of 

approximation functions and associated values of series as follows: 

           
1 2

0

1 1 2 1 1 2 1 ,1 1 2

1 1

( , , ), ( , , ) ,
N N

ij ij i j

i j

u x x t x x t u t x t R x P x
 

   (4.31a) 

           
1 2

0

2 1 2 2 1 2 2 1 ,2 2

1 1

( , , ), ( , , ) ,
N N

ij ij i j

i j

u x x t x x t u t y t R x P x
 

  (4.31b) 

      
1 2

0

3 1 2 3 1 2

1 1

( , , )
N N

ij i j

i j

u x x t u t R x P x
 

  (4.31c) 

where 1 2 3, , , ,ij ij ij ij iju u u x y  are variables to be determined;    1 2,i jR x P x  are the 

shape functions in 1x  , 2x   direction, respectively. 

The hybrid shape functions  1iR x  and  2jP x  for different BCs used in this 

paper are listed in Table 4.1 as follow: 

Table 4.1:  Approximation functions of series solutions with different boundary 

conditions 

Boundary conditions 
(BCs) 

Approximation functions 

 1jR x   2jP x  
SFSF 1 /

1

jx a
x e

  2 /

2

jx b
x e

  
SSSS   1 /

1 1

jx a
x a x e


    2 /

2 2

jx b
x b x e


  

CFCF 1 /2

1

jx a
x e

  2 /2

2

jx b
x e

  
CSCS   1 /2

1 1

jx a
x a x e


    2 /2

2 2

jx b
x b x e


  

CCCC   1
2 /2

1 1

jx a
x a x e


    2

2 /2

2 2

jx b
x b x e


  

4.4 Polynomial chaos expansion 

In this study, û  is fundamental frequency or critical buckling load of the FG 

microplates in terms of a truncated orthogonal series as follows : 
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    
1

0

ˆ ˆ
P

PCE i i

i

u u c He r




  x q   (4.38) 

where ˆ
PCEu  is the response of interest obtained from the PCE; q  is a vector of 

independent random variables in PCE space mapped to physical random 

parameters x ; iHe  are multivariate orthogonal basis functions; ic  are coefficients 

to be determined so that the residual r  is minimized; P  is the permutation of the 

qualified order of the polynomial n  

4.5 Stochastic collocation 

For 1-D problem (i.e., one random input X ) and in  interpolation points, it 

approximates the stochastic response u  by forming the Lagrange functions and 

estimating the model response at interpolation points  iu q as follows: 

       
1

ˆ
in

i i

i

u X u X u q L q


    (4.46) 

 where q  is a standard variable mapping to the physical variable X  and for 

maximizing performance of this approach iq  are defined as appropriate Gauss 

quadrature points corresponding to the distribution of q . The 1-D Lagrange 

interpolation  iL q  is defined as: 

       
1

/
in

i j i j
j
j i

L q q q q q



     (4.47) 

4.6 Numerical examples 

In this section, numerical examples are carried out to investigate stochastic 

buckling and free vibration behaviors of the microplates with different BCs in 

which the shear function      1 3 3

3 3 3cot / 16 / 15x h x x h   is selected.  

Table 4.6: Comparison study between MCS (10.000 samples) and PCE (256 

samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the 

fundamental frequency of the FG microplates ( / 10a h  , MAT 1) 

BCs p  Theory Mean SD Kurtosis 

 

Skewness 

 

COV 

(%) 
Time 

(s) 

Present 

 

/ 1h l    

SS 

SS 

1 PCE 11.0107 0.5087 2.4628 -0.0532 4.6 17.02 11.010 

MCS 11.0100 0.5087 2.4633 -0.0531 4.6 814.1 

5 PCE 8.7431 0.8313 2.6301 0.1966 9.5 18.1 8.720 

MCS 8.7456 0.8317 2.6308 0.1962 9.5 815.3 

10 PCE 8.0719 0.8990 2.6953 0.2624 11.1 18.4 8.044 

MCS 8.0747 0.8986 2.6949 0.2629 11.1 817.0 

 …         
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It can be observed that all statistical moments obtained from MCS and PCE show 

good agreement in all cases. The required computational time of the present 

approach is about 1/47 compared with direct MCS method.  

Table 4.9 compares the standard deviation (SD), mean, kurtosis and skewness, 

which are the first four statistical moments of the natural frequencies as 

calculated by the SC and MCS models for a range of p  and /a h  values.  

Table 4.9: The standard deviation (SD), mean, Skewness,  Kurtosis for the 

natural frequencies T of FG sandwich microplates (1-2-1) under uniform 

distribution of SC (4096 samples) and MCS (10.000 samples) (MAT 4, / 10a h 

), 600oT C   

BC p  Theory Mean SD Kurtosis 

 

Skewness 

 
COV 

(%) 

Time 

(s) 

Present 

 

/ 1h l    

SS

SS 

 

0.5 SC 22.6602 2.0772 3.1872 0.2472 9.2 101 22.542 

MCS 22.6515 2.0821 3.2086 0.2464 9.2 1425 

 1 SC 21.7469 1.9354 3.1576 0.2720 8.9 99 21.662 

  MCS 21.7353 1.9309 3.1168 0.2674 8.9 1421  

 2 SC 20.8142 1.7360 3.0883 0.2400 8.3 102   20.750 

  MCS 20.8017 1.7312 3.0987 0.2384 8.3 1427  

….          

4.6.6 Reliability estimation and sensitivity results 

Figs. 4.4a compare the probability density function (PDF) and probability of 

exceedance (PoE) of MCS and PCE for the vibration and buckling analysis of 

the FG plates and microplates with SSSS BC. It can be observed again that the 

results of MCS are in good agreement with PCE. 

Probability density function (PDF) Probability of exceedance (PoE) 

Figure 4.4a: PDF and PoE of MCS and PCE for the fundamental frequency (Hz) 

of the FG plates with SSSS, SFSF and CFCF BCs ( 1p  , / 5a h  ) 

It is consistent with what is observed from the comparison of the COV of these 

stochastic responses shown in Fig. 4.10a. 
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Fundamental frequencies  Critical buckling loads  

Figure 4.10a: Coefficient of variation (COV) with respect the power-law index 

p  of the FG microplates ( / 10a h  ) with various BCs and / 1h l   

   Fundamental frequency Critical buckling load   

Figure 4.14a: Total Sobol index of the random input variables with respect to 

the fundamental frequencies and critical buckling loads of the CCCC FG 

microplates ( / 10a h  , / 1h l  ) 

4.7 Conclusions 

A unified higher-order shear deformation plate theory for vibration analysis and 

buckling load of the microplates has been proposed in this chapter. It is developed 

from fundamental equations of the elasticity theory. The solution field is 

approximated by bi-directional series in which hybrid shape functions are 

proposed, then the stiffness and mass matrix are explicitly derived. 

CHƯƠNG 5 AN INTELLIGENT COMPUTATIONAL ALGORITHM 

FOR STOCHASTIC ANALYSIS OF FUNCTIONALLY GRADED 

POROUS MICROPLATES 

5.1 Introduction 

With the aims of reducing the computational time in dealing with stochastic 

problems, this study proposes a novel intelligent computational algorithm, 

namely iBCMO-DNN, for handling stochastic thermal buckling analysis of FGP 

microplates. The theory is developed via the improved BCMO, DNN, MST and 
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unified higher-order shear deformation theory (HSDT). The deterministic 

responses of FGP microplates are derived from Ritz-based solver based on a 

general HSDT and MST. 

5.2 Theoretical formulation 

5.2.1 The properties of materials and temperature distribution 

The effective material properties of FGP microplates are given by: 

          3 32 / 2 / 2
p

c m m c mP x P P x h h P P P       (5.1) 

where cP  and mP  are the Poisson’s ratio  , Young’s moduli E  of ceramic and 

metal materials, respectively; p  is the power-law index; 0 ≤ β ≪ 1  is the porosity 

volume fraction;  3 / 2, / 2x h h  . Three types of temperature distribution are 

considered as below:  

 For uniform distribution (UTR):    oT z T T     

 For linear distribution (LTR):     / 0.5t b bT z T T z h T      

 For the nonlinear temperature rise (NLTR):  

           
/ 2

/2 /2
/ 1/ 1/

h z

t b
h h

T z T b T T k z dz k d 
 

    
 

where  k z  is the coefficient of thermal conductivity. 

5.2.2 FGP microplates' unified kinematics 

A general HSDT kinematic of FGP microplates is generated from as follows: 

          0 0

1 1 2 3 2 3 1 1 2 1 3 3,1 1 1 2, , , ,u x x x x x x x u u x x     (5.2a) 

          0 0

2 1 2 3 2 3 2 1 2 1 3 3,2 2 1 2, , , ,u x x x x x x x u u x x     (5.2b) 

    0

3 1 2 3 3 1 2, , ,u x x x u x x  (5.2c) 

with        2 3 3 1 3 3 3,s sx H x x H x x       ,    
3

3 ,3 3 3

0

/

x

x f x dx   ; sH  is 

the transverse shear stiffness;  3f x  is a higher-order term which satisfies the 

boundary condition  ,3 3 0.5 0f x h   .The FGP microplates' total potential 

energy is calculated by using Hamilton's principle as follows: 

  
2

1

0

t

UB VB KB

t

dt          (5.3) 

where ,VB UB   and KE  are the variations of work done by membrane 

compressive forces, strain energy and kinetic energy, respectively.  The strain 

energy variation of the system UB  is obtained by the modified strain gradient 

theory (MST): 

  UB

A

dA         σ ε p τ η m χ    (5.4) 

where , , ,ε χ ξ η  are strains, symmetric rotation gradients, dilatation gradient and 

deviation stretch gradient, respectively; σ  is Cauchy stress; , ,m p τ  are high-
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order stresses corresponding with strain gradients , ,χ ξ η , respectively. The 

components of strain ij  and strain gradients , ,i ijk ij    are defined as follows: 

  , , / 2ij i j j iu u   ; ,i mm i   (5.5a) 

 
     

 

, , , , ,

,

/ 3 2 2

2 /15

ijk jk i ki j ij k i mi m jk k mk m ij

j mj m ki

         

  

      

 


 (5.5b) 

  , , / 4ij n mj imn n mi jmnu e u e    (5.5c)  

where ij  is Knonecker delta; imne  is permutation symbol. The constitutive 

equations are used to determine the stress components as follows: 

 
2ij kk ij ij     ; 2

12ij ijm l  ; 2

22j jp l  ; 2

32ijk ijkl    (5.6) 

where ,   are Lamé constants; 1 2 3, ,l l l  are three material length scale parameters 

(MLSP) which should be practically determined by experimental works. 

5.3 Ritz-type series solution 

Based on the Ritz approach and variational formulation of the PMF 

microplates, a series of approximation functions and associated values can be 

utilized to represent the membrane and transverse displacements 

 0 0 0

1 2 1 2 3, , , ,u u u  of the PMF microplates, as follows: 
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where 3 2 1, , , ,ij ij ij ij ijx y u u u  are the unknown variables. It is noted that two shape 

functions in the 1x   and 2x   directions,  1iR x  and  2jP x  are sufficient to 

figure out the PMF microplate's five unknowns. 

5.4 Stochastic model 

5.4.1 Balancing composite motion optimization (BCMO) 

The balancing composite motion optimization is a meta-heuristic algorithm 

technique was initially developed by Le-Duc et al in which the key idea of this 

approach is to balance the individual composite motion features within the global 

optimum.  

5.4.2 ANN-BCMO algorithm 
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The Artificial Neural Network (ANN) system shown in Fig. 5.2 contains three 

kinds of layers, namely, input layer, hidden layer, output layer in which each 

layer consists of neurons that are connected to each other in the previous layer. 

Figure 5.1: An artificial neural network structure 

The output data of the activation function for the sum is expressed as follows:  

  
1
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where  n

iy and n

ix  are data pair output and input of activation function of node i , 

respectively; 1n

ijw   is the weight between the output node i  and input node j ; n

ib  

is the bias of node j ;   is the activation function. 

5.4.3 iBCMO-DNN algorithm 

Figure 5.3: Deep neural network 

Each node in the succeeding layers will get the total of the preceding nodes' 

output values multiplied by their respective weights, and the activation function's 

output data for the sum is supplied as follows: 
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5.5 Numerical results 

In order to investigate stochastic behaviors of FG microplates, four random 

variables of material properties ( , , , ,, , ,m i c i m i c iE E p p ) are employed with the 

population size 500NP  . It is noted that the weight and bias values are 

automatically updated according to Levenberg - Marquardt optimization, the 

number of nodes in each hidden layer is 21. The dataset, which consists of input-
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output pairs and training samples are randomly generated through iterations in 

the ANN training process. In addition, in the prediction process, training samples 

in the dataset are divided into two groups, in which 80% pairs in data is used for 

the training set and 20% for the test set. Tables 5.3 presents the mean and standard 

deviation (SD) of normalized fundamental frequencies of Al/Al2O3 FG 

microplates with different boundary conditions for both Ritz–BCMO and 

BCMO-ANN models. 

Table 5.3: Mean and standard deviation (SD) of normalized fundamental 

frequencies for FG microplates with / 10a h   and SSSS boundary condition 

  p  /h l  Theory Mean SD Time(s) Present 

0.1 1 10 Ritz-BCMO 4.4049 0.0496 615 4.4073 

   BCMO-ANN 4.4090 0.0491 10  

  5 Ritz-BCMO 4.7449 0.0517 620 4.7485 

   BCMO-ANN 4.7451 0.0513 9  

  1 Ritz-BCMO 11.0692 0.1051 617 11.0673 

   BCMO-ANN 11.0745 0.1059 11  

 10 10 Ritz-BCMO 3.3994 0.0953 625 3.4012 

   BCMO-ANN 3.4040 0.0961 10  

  5 Ritz-BCMO 3.5922 0.0997 623 3.6001 

   BCMO-ANN 3.6037 0.0993 12  

  1 Ritz-BCMO 7.5662 0.1991 627 7.5531 

   BCMO-ANN 7.5376 0.1983 10  

  ….      

(a) SSSS, 0.1   (b) SSSS, 0.2   

Figure 5.7: Loss function of the normalized fundamental frequencies for FGP 

microplates with different boundary conditions, 10p  , / 10a h   and / 5h l   

In order to investigate stochastic critical buckling temperatures of FGP 

microplates, it is noted that five random variables of material properties 
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 , , , ,, , , ,m i c i t i m iE E    are  designed to be randomly distributed with the same 

population size 2000NP  . Additionally, the data training was generated from 

the earlier analysis of Ritz-iBCMO solution. These values will be evaluated for 

the accuracy through the training process using the long short time memory 

model of the deep learning network. The initial normalization of the critical 

buckling temperatures is used as the output data for training samples, and these 

design factors are taken into consideration as the input data. Input-output pairs 

and randomly generated training samples are included in the data set, which is 

used to train the DNN. 

For Al/Al2O3 FGP microplates with three boundary conditions, the mean and 

standard deviation of normalized critical buckling temperatures from the Ritz-

iBCMO and iBCMO-DNN models are shown in Tables 5.24. The critical 

buckling temperature responses are computed for the side-to-thickness ratio 

/ 20a h  , porous parameter 0.1  and 0.3, power-law index 0.5p  and 2, 

length scale parameter / 1h l   and 10. Obviously, the statistical moments of the 

critical buckling temperatures derived from the Ritz-iBCMO and iBCMO-DNN 

show good agreements for all cases. 

Table 5.14: Mean and standard deviation (SD) of normalized critical buckling 

temperature for FGP microplates with biaxial compression, / 20a h  , SSSS 

under uniform temperature distribution 
  p  /h l  Theory Mean SD Time(s) Present 

0.1 0.5 10 Ritz-iBCMO 0.3291 0.0089 2123 0.3284 

   iBCMO-DNN 0.3307 0.0091 845  

  1 Ritz-iBCMO 5.1633 0.1343 2125 5.1596 

   iBCMO-DNN 5.1688 0.1347 844  

 2 10 Ritz-iBCMO 0.2239 0.0066 2124 0.2236 

   iBCMO-DNN 0.2259 0.0071 845  

  1 Ritz-iBCMO 3.8358 0.1084 2123 3.8278 

   iBCMO-DNN 3.8315 0.1082 846  

…        

Additionally, the performance of the current iBCMO-DNN algorithm in 

predicting buckling temperature responses is also shown in Figs. 5.27 abc. 
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(a) SSSS, 0.1   (b) SCSC, 0.1   (c) CCCC, 0.1   

Figure 5.27: Quantile-quantile plot of the Ritz-iBCMO model with DNN-

iBCMO, / 20a h  , 1p  , / 5h l  , biaxial compression under uniform 

distribution 

5.6. Conclusions 

This research proposed a novel intelligent computational algorithm, iBCMO-

DNN, for stochastic buckling temperature analysis of FGP microplates with 

uncertainty of material properties. 

CHAPPTER 6 META-HEURISTIC OPTIMIZATION ALGORITHMS 

FOR VIBRATION AND BUCKLING ANALYSIS OF LAMINATED 

COMPOSITE PLATES 

6.1. Introduction   

A brief literature survey indicates that the BCMO and SGA algorithms are 

recognized as efficient methods for optimization of structures. However, there is 

no identified research employing these algorithms specifically for solving 

optimization problems related to laminated composite plates. This study aims to 

address existing gaps by proposing meta-heuristic optimization algorithms to 

determine the critical buckling loads and fundamental frequencies of laminated 

composite plates. 

6.2. Theoretical formulation 

The unified HSDT for laminated composite plates: 

         
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where        2 3 3 1 3 3 3,s sx H x x H x x       ;. The relationship between 

the strains and stresses for the k  layer is expressed as: 
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where  
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with   is the fiber angle in each layer, 
 k

ijQ  of the orthotropic composite plates 

in the local coordinate system are given by: 
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6.3. Ritz method 

The membrane and transverse displacements, as well as rotations 

 0 0 0

1 2 3 1 2, , , ,u u u    can be represented through a series of shape functions in 1x 
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, 2x   direction (  1iX x  and  2jY x ) and five unknowns variables (

1 2 3, , , ,ij ij ij ij iju u u x y ), expressed as follows: 
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6.4. Optimization algorithm  

In this section, three algorithms are presented to identify the fiber angle   that 

maximize the critical buckling loads and frequencies of laminated composite 

plates, with the following objective functions.  

Maximum  d

if   or  d

cr iN f   

Subjected to 90 90o d o

i       (6.23) 

with d  is the number of layers. 

Three algorithms including differential evolution (DE), shrimp and goby 

association search algorithm (SGA) and balancing composite motion 

optimization (BCMO) are used to solve the above optimization problem. 

6.5. Numerical examples 

6.5.2. Optimization study 

In order to compare the efficacy of various meta-heuristics, Figs. 6.4 and 6.5 

shows the convergence histories of natural frequencies and buckling loads of 

SSSS plates by three different solutions (DE, SGA, and BCMO). It can be seen 

that the SGA and BCMO algorithms converge faster than the DE one. It should 

be noted that the comparison is not solely based on computational cost but 

extends to the effectiveness of the algorithms in achieving optimal solutions. 

Interestingly, while the call function of BCMO is better than SGA algorithm, 

their performance varies. 
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a) Symmetric layers b) Arbitrary layers 

Figure 6.4: Comparison the maximum buckling load (uniaxial compression) of 

SSSS square laminated composite plates with size population 20NP   (

1 2/ 40E E  ) 

 

Figure 6.5: Comparison the maximum fundamental frequencies for SSSS square 

laminated composite plates with size population 20NP  ( 1 2/ 40E E  ) 

6.6. Conclusions 

This chapter studies meta-heuristic optimization algorithms for vibration and 

buckling analysis of laminated composite plates. The theoretical framework 

incorporates a unified HSDT, Ritz method, BCMO, and SGA. The obtained 

numerical results showed an efficiency and accuracy of the present theory in 

predicting the responses of laminated composite plates. 
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CHAPPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The dissertation has developed new approximation functions for the Ritz method; 

developed stochastic models for analysis behaviors of FG, FG sandwich, FGP, 

PMF plates and microplates; developed two novel intelligent computation 

algorithms for solving the stochastic problems of microplates; proposed two 

optimization methods to search the optimal fiber directions of laminated 

composite plates.  The unified higher-order shear deformation theory (HSDT) 

theory has been formulated to approximate of the displacement field. The 

modified gradient strain theory (MST) and the modified couple stress theory 

(MCT) are employed in the analysis of microplates, taking into account their 

size-dependent behavior. The governing equations of motion are obtained using 

Hamilton's principle. Convergence and verification studies are conducted to 

establish the precision of the proposed solution.  

While the current shape functions have demonstrated effectiveness on two-

dimensional microplates, their application on three-dimensional plates and 

microplates poses certain challenges. Furthermore, the present thesis fails to 

account for the behavioral characteristics of laminated composite microplates in 

situations where the fiber direction undergoes uncertain variations. The current 

methodology encounters challenges when dealing with plates that have arbitrary 

boundary conditions. 

7.2. Recommendations 

The following are some suggestions for how to proceed with the projected 

expansion of the study in the future: 

• The novel shape functions can be developed to analysis behaviors of 

laminated composite microplates for two-dimensional and three-

dimensional. 

• Analysis of skew composite/FG microplates can be developed by 

extending present methods. 

• A nonlinear model based on large displacements, rotations, and the Ritz 

method should be considered for the analysis of composite and FGP 

microplates under the arbitrary boundary conditions. 

 

 

 


